#P1876A. Helmets in Night Light

Helmets in Night Light

Description

Pak Chanek is the chief of a village named Khuntien. On one night filled with lights, Pak Chanek has a sudden and important announcement that needs to be notified to all of the $n$ residents in Khuntien.

First, Pak Chanek shares the announcement directly to one or more residents with a cost of $p$ for each person. After that, the residents can share the announcement to other residents using a magical helmet-shaped device. However, there is a cost for using the helmet-shaped device. For each $i$, if the $i$-th resident has got the announcement at least once (either directly from Pak Chanek or from another resident), he/she can share the announcement to at most $a_i$ other residents with a cost of $b_i$ for each share.

If Pak Chanek can also control how the residents share the announcement to other residents, what is the minimum cost for Pak Chanek to notify all $n$ residents of Khuntien about the announcement?

deepl翻译

Pak Chanek 是一个名叫坤甸(Khuntien)的村庄的村长。在一个灯火通明的夜晚,Pak Chanek 突然接到一个重要通知,需要通知坤甸的所有 nn 居民。

首先,Pak Chanek 会先直接发给一个或多个村民,通知一个村民产生 pp 的代价 。之后,居民可以使用一个神奇的头盔状装置将公告分享给其他居民。不过,使用头盔形装置需要付费。在每 ii 个居民中,如果 ii -居民至少得到过一次公告(头盔给的和村长给的都行),那么他/她最多可以将公告分享给 aia_i 个其他居民,每次分享的费用为 bib_i

如果 Pak Chanek 也可以控制居民向其他居民分享公告的方式,那么 Pak Chanek 通知坤甸所有 nn 居民该公告的最低成本是多少?

Input

Each test contains multiple test cases. The first line contains an integer $t$ ($1 \leq t \leq 10^4$) — the number of test cases. The following lines contain the description of each test case.

The first line contains two integers $n$ and $p$ ($1 \leq n \leq 10^5$; $1 \leq p \leq 10^5$) — the number of residents and the cost for Pak Chanek to share the announcement directly to one resident.

The second line contains $n$ integers $a_1,a_2,a_3,\ldots,a_n$ ($1\leq a_i\leq10^5$) — the maximum number of residents that each resident can share the announcement to.

The third line contains $n$ integers $b_1,b_2,b_3,\ldots,b_n$ ($1\leq b_i\leq10^5$) — the cost for each resident to share the announcement to one other resident.

It is guaranteed that the sum of $n$ over all test cases does not exceed $10^5$.

Output

For each test case, output a line containing an integer representing the minimum cost to notify all $n$ residents of Khuntien about the announcement.

3
6 3
2 3 2 1 1 3
4 3 2 6 3 6
1 100000
100000
1
4 94
1 4 2 3
103 96 86 57
16
100000
265
2
5 4
2 2 3 1 1
1 1 3 3 2
5 4
2 3 1 3 3
3 2 2 2 1
8
9

Note

In the first test case, the following is a possible optimal strategy:

  1. Pak Chanek shares the announcement directly to the $3$-rd, $5$-th, and $6$-th resident. This requires a cost of $p+p+p=3+3+3=9$.
  2. The $3$-rd resident shares the announcement to the $1$-st and $2$-nd resident. This requires a cost of $b_3+b_3=2+2=4$.
  3. The $2$-nd resident shares the announcement to the $4$-th resident. This requires a cost of $b_2=3$.

The total cost is $9+4+3=16$. It can be shown that there is no other strategy with a smaller cost.

deepl 翻译

在第一个测试案例中,以下是一个可能的最优策略:

  1. Pak Chanek 直接向 33 -rd、 55 -th 和 66 -th 居民分享公告。这需要花费 p+p+p=3+3+3=9p+p+p=3+3+3=9
  2. 33 -rd居民与 11 -st和 22 -nd居民共享公告。这需要花费 b3+b3=2+2=4b_3+b_3=2+2=4
  3. 22 nd居民向 44 /th居民分享公告。这需要花费 b2=3b_2=3

总成本为 9+4+3=169+4+3=16 。可以证明,没有其他策略的成本更低。