#P1889C2. Doremy's Drying Plan (Hard Version)

Doremy's Drying Plan (Hard Version)

Description

The only differences between the two versions of this problem are the constraint on $k$, the time limit and the memory limit. You can make hacks only if all versions of the problem are solved.

Doremy lives in a rainy country consisting of $n$ cities numbered from $1$ to $n$.

The weather broadcast predicted the distribution of rain in the next $m$ days. In the $i$-th day, it will rain in the cities in the interval $[l_i, r_i]$. A city is called dry if it will never rain in that city in the next $m$ days.

It turns out that Doremy has a special power. She can choose $k$ days, and during these days it will not rain. Doremy wants to calculate the maximum number of dry cities after using the special power.

deepl翻译

这个问题的两个版本之间的唯一区别在于 kk 的限制、时间限制和内存限制。只有所有版本的问题都解决了,你才能进行破解。

多瑞米生活在一个多雨的国家,由 nn 个城市组成,编号从 11nn

天气预报预测了未来 mm 天的雨量分布。在第 ii 天, [li,ri][l_i, r_i] 区间内的城市将下雨。如果一个城市在接下来的 mm 天里不会下雨,那么这个城市就被称为 "干旱"。

原来,多莱米有一种特殊的能力。她可以选择 kk 天,在这些天里不会下雨。多莱米想计算出使用特殊能力后,最多有多少个城市干旱。

Input

The input consists of multiple test cases. The first line contains a single integer $t$ ($1\le t\le 10^4$) — the number of test cases. The description of the test cases follows.

The first line contains three integers $n$, $m$ and $k$ ($1\le n\le 2\cdot 10^5$, $2 \le m \le 2\cdot 10^5$, $2 \le k \le \min(10, m)$) — the number of cities, the number of days, and the number of days of rain that Doremy can prevent.

Then, $m$ lines follow. The $i$-th line contains two integers $l_i$, $r_i$ ($1\le l_i\le r_i\le n$) — the rain coverage on day $i$.

It is guaranteed that the sum of $n$ and the sum of $m$ over all test cases do not exceed $2\cdot 10^5$.

Output

For each test case, output one integer — the maximum number of dry cities.

6
2 3 2
1 2
1 2
1 1
5 3 2
1 3
2 4
3 5
10 6 4
1 5
6 10
2 2
3 7
5 8
1 4
100 6 5
1 100
1 100
1 100
1 100
1 100
1 100
1000 2 2
1 1
1 1
20 5 3
9 20
3 3
10 11
11 13
6 18
1
2
6
0
1000
17

Note

In the first test case, if Doremy prevents

  • rain $1,2$, then city $2$ will be dry;
  • rain $2,3$, then no city will be dry;
  • rain $1,3$, then no city will be dry;

So there is at most $1$ dry city.

In the second test case, if Doremy prevents

  • rain $1,2$, then city $1,2$ will be dry;
  • rain $2,3$, then city $4,5$ will be dry;
  • rain $1,3$, then city $1,5$ will be dry.

So there are at most $2$ dry cities.

In the third test case, it is optimal to prevent rain $1,2,4,5$.

In the forth test case, there is always a day of rain that wets all the cities and cannot be prevented.