#P1948B. Array Fix
Array Fix
Description
You are given an integer array $a$ of length $n$.
You can perform the following operation any number of times (possibly zero): take any element of the array $a$, which is at least $10$, delete it, and instead insert the digits that element consisted of in the same position, in order they appear in that element.
For example:
- if we apply this operation to the $3$-rd element of the array $[12, 3, 45, 67]$, then the array becomes $[12, 3, 4, 5, 67]$.
- if we apply this operation to the $2$-nd element of the array $[2, 10]$, then the array becomes $[2, 1, 0]$.
Your task is to determine whether it is possible to make $a$ sorted in non-descending order using the aforementioned operation any number of times (possibly zero). In other words, you have to determine if it is possible to transform the array $a$ in such a way that $a_1 \le a_2 \le \dots \le a_k$, where $k$ is the current length of the array $a$.
deepl翻译
给你一个长度为 的整数数组 。
你可以执行以下操作任意多次(可能为零):取数组 中至少是 的任意元素,删除它,然后在相同位置插入该元素包含的数字,按它们在该元素中出现的顺序排列。
例如
- 如果我们对数组 中的 /-rd元素执行此操作,那么数组就变成了 。
- 如果我们对数组 中的 /-nd 元素执行此操作,那么数组就变成了 。
你的任务是确定是否有可能使用上述操作**任意次数(可能是零)**使 以非降序排序。换句话说,你必须确定是否有可能将数组 转换为 ,其中 是数组 的当前长度。
Input
The first line contains a single integer $t$ ($1 \le t \le 10^3$) — the number of test cases.
Each test case consists of two lines:
- the first line contains a single integer $n$ ($2 \le n \le 50$).
- the second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($0 \le a_i \le 99$).
Output
For each test case, print YES if it is possible to make $a$ sorted in non-decreasing order using the aforementioned operation; otherwise, print NO.
You can print each letter in any case. For example, yes, Yes, YeS will all be recognized as a positive answer.
3
4
12 3 45 67
3
12 28 5
2
0 0
YES
NO
YES
Note
In the first example, you can split the first element, then the array becomes $[1, 2, 3, 45, 67]$.
In the second example, there is no way to get a sorted array.
In the third example, the array is already sorted.
相关
在下列比赛中: